
ENGO 697
Remote Sensing Systems and Advanced Analytics

Dr. Linlin (Lincoln) Xu
Linlin.xu@ucalgary.ca

Office: ENE 221

Session 9: How does deep learning fit into remote sensing
systems and fundamental concepts

mailto:Linlin.xu@ucalgary.com

(1) Direct
inversion

(2) LUT approach (3) Numerical
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form
known, but with some unknown
parameters U

no no Yes, estimate X
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known,
can accommodate both?

no yes? Yes? Use (X,Y) to

estimate parameters

in f(.)

yes? Yes, use both

simulated and observed

data

Yes, use both

simulated and observed

data

Can use prior information? e.g.,

spatial prior and value prior

no Yes? Use value prior for

sampling

Yes? Use value prior o f

X in Bayesian estimation

Yes, Use value prior in sampling

and spatial prior in Random fie lds

Yes, spatial prior in

Random field

approaches

Yes, similar to ML

Advantages Knowledge
-driven;
Simple,

easy

Knowledge-driven;
Intuitive, easy,
discrete fitting;

Knowledge-driven;
estimate U;
Efficient for simple

f(.) in convex
problems

Knowledge-driven;
flexible; continuous fitting;
good inter/extrapolation;

faster than LUT

Data-driven;
flexible; Classic;

Strong modeling
capability;
automatic feature

learning;

Disadvantages Unrealistic;
rely on
simple f(.)

Sensitive to
accuracy of f(.),
similarity metrics,

sampling density
and range; slow if

LUT is large; bad for
extrapolation;

Rely on efficiency
of nonlinear solver;
Slow; Local

optimum;

Overfitting and underfitting
risk to simulated data;
difficult model selection;
Sensitive to accuracy of f(.),

similarity metrics, sampling

density and range;

Weak modeling
capability; Rely on

“good” engineered

features; Black-box;
Overfitting, underfitting;

Feature and model

selection is difficult and

slow

Overfitting and
underfitting; Black-
box;

Machine Learning (ML) Approaches
All previous approaches assume that radiative transfer model f(.) is known. What if f(.) is unknown? How do we solve inverse problems?

In this case, we need to collect both X (ground truth) and Y (remote sensing data) to build X and Y pairs, i.e., {(X j,Yj) | j=1,2,...,T}, based on

which we establish the inverse function X=g(Y,θ), where g(.) is a statistical or ML model, which is called empirical model.

No forward model: Y = f(X), where f(.) is unknown.

We need to obtain some remote sensing data Y

and the associated ground truth data Y for building some (X,Y) pairs,

to be used as training data to train ML model.

X1 : Y1

X2 : Y2

X3 : Y3

….

X4 : Y4

Based on {(Xj,Yj) | j=1,2,...,T}, we build the following objective function:

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)

where θ is the unknown parameters in g(.). Once we know θ, we can establish the inverse function g(.), and use it to estimate the X value of an

observed Y value by X=g(Y).

Comparing with the data simulation & ML approach in (4), here the only difference is that the data is not simulated but observed for both X and Y.

The ML approach is known as data-driven empirical approaches that are more and more widely used in remote sensing.

Deep Learning (DL) Approaches

Deep learning (DL) approaches are also ML approaches, and as such they can be used for data inversion through (4) and (5),

i.e.,

--- if f(.) is known, we simulate {(Xj,Yj) | j=1,2,...,T} using f(.) and use them to train DL models for obtaining the inverse function

X=g(Y);

--- if f(.) is unknown, we obtain remote sensing data Y and ground truth data X to build X and Y pairs, i.e., {(X j,Yj) | j=1,2,...,T},

and use them to train DL models for obtaining the inverse function X=g(Y);

Based on training data, we build the following objective function:

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)

where θ is the unknown parameters in DL model g(.). Once we know θ, we can establish the inverse function g(.), and use it to

estimate the X value of an observed Y value by X=g(Y).

Comparing with traditional ML approaches, such as SVM and random forest, the DL approaches, due to their strong modeling

capability and GPU computation, are more capable of effectively and efficiently learning the complex nonlinear relationship between Y

and X, and perform accurate and fast model prediction for estimating X.

True Inverse Function vs. Approximated Inverse Function

Forward model:

Y = f(X)

(1) Y: received radiation by the sensor

(2) X: variables that you want to know, e.g., class labels, chlorophyll content in leaves, leaf area index/density;

True inverse function:

X = t(Y) = f-1(Y)

where f-1(.) is difficult/impossible to get, and the form of t(.) is usually unknown; t(.) is physical model;

Approximated inverse function:

X = g(Y)

Note that g(.) is only an approximation to the true inverse function t(.), and g(.) is empirical model.

Based on {(Xj,Yj) | j=1,2,...,n}, we build the following objective function:

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)

Example Application

●Handwriting Digit Recognition

“2”
Deep Neural

Network

Q1: in this example, what is the observation Y?

Q2: what is underlying variable X that you try to estimate?

Q3: do you have a forward model?

Q4: how do you obtain your inverse function? Is this inverse model/function a physical model?

Inverse problem

“2”
Deep Neural

Network

Forward model: Y = f(X)

(1) Y: Digital image
(2) X: Image identity, i.e., the digit value in the image

Inverse model: X = g(Y, θ)

where g(.) is an unknown inverse function with unknown model parameter θ.

Knowledge, data and prior information?
--- Knowledge f(.) too complex and nonlinear, unknown; true inverse function X = t(Y)=f-1(Y) unknown

---- Data (X, Y) pairs abundant;
---- Prior information (e.g., spatial prior) ambiguous; pixels are spatially correlated to form the digit signature;

Handwriting Digit Recognition

Input Output

16 x 16 = 256

……

Ink → 1
No ink → 0

is 1

is 2

is 0

…………

x1

x2

x10

0.1

0.7

0.2

y1

y2

y256

Example Application

●Handwriting Digit Recognition R256

Deep Neural
Network “2

”

…… ……
x1

x2

x10

y1

y2

y256

Element of Neural Network

…

bias

Activation
functionweights

Neuron

Output
LayerHidden Layers

Input
Layer

Neural Network

Input OutputLayer 1

…………

Layer 2

……

Layer L

……

……

……

……

……
x1

x2

xM

Deep means many hidden layers

neuron

y1

y2

yN

Example of Neural Network

Sigmoid Function

1

-1

1

-2

1

-1

1

0

4

-2

0.98

0.12

………… …… ……

……

……

……

……

x1

x2

xM

Neural Network

W1 W2 WL

b2 bL

y a1 a2 x

b1W1 y +
b2W2 a1 +

bLWL +aL-1

b1

y1

y2

y256

………… …… ……

……

……

……

……

x1

x2

xM

Neural Network

W1 W2 WL

b2 bL

y a1 a2 x

b1W1 y + b2W2 + bLWL +…

b1

…

y1

y2

y256

x y

Softmax

●Softmax layer as the output layer

Ordinary Layer

In general, the output of
network can be any
value.

May not be easy to
interpret

Softmax

●Softmax layer as the output layer

Softmax Layer

3

-3

1 2.7

20

0.05

0.88

0.12

≈0

How to set network parameters

16 x 16 = 256

…………

……

……

……

Ink → 1
No ink → 0

……

x1

x2

x10

0.1

0.7

0.2

x1 has the maximum valueInput:

x2 has the maximum valueInput:

is 1

is 2

is 0
So

ftm
ax

y1

y2

y256

Inverse problem

“2”
Deep Neural

Network

Inverse model: X = g(Y, θ)

where g(.) is an unknown inverse function with unknown model parameter θ.

Now, the first “unknown” is known, because we assume that g(.) can be expressed

as a neural network.

How do we address the second “unknown”?

Training Data

●Preparing training data: images and their labels

Using the training data to find
the network parameters.

“5
”

“0
”

“4
”

“1
”

“3
”

“1
”

“2
”

“9
”

Cost

…………

……

……

……

……

x1

x2

x10

Cost

0.2

0.3

0.5

“1
”

……

1

0

0
……

Cost can be Euclidean distance or cross entropy of
the network output and target

targe
t

y1

y2

y256

Total Cost

y
1

y
2

y
R

NN

NN

NN

…… ……

x1

x2

xR

…… ……

y
3

NN x3

For all training data … Total Cost:

Gradient Descent

Assume there are only two
parameters w1 and w2 in a
network.

The colors represent the value of C.

Error Surface

Gradient Descent

Eventually, we would
reach a minima …..

Local Minima

●Gradient descent never guarantee global minima

Reach different
minima, so different
results

Besides local minima ……

cost

parameter space

Very slow at the
plateau

Stuck at local minima

Stuck at saddle point

In physical world ……

●Momentum

How about put this phenomenon
in gradient descent?

Momentum

cost Movement =
Negative of Gradient + Momentum

Gradient = 0

Still not guarantee reaching
global minima, but give some
hope ……

Negative of Gradient
Momentum
Real Movement

Do we really need a global optimum?

“2”
Deep Neural

Network

Inverse model: X = g(Y, θ)

where g(.) is an unknown inverse function with unknown model parameter θ.

True inverse function X = t(Y)=f-1(Y) unknown;

Use approximated inverse function X = g(Y), where the form of g(.) is expressed as a neural network;

Use data pairs to fit X = g(Y, θ), in order to estimate θ;

The “goodness” of θ depends on the “goodness” of g(.):

---- if g(.) is very close to t(.), then we probably want a global optimum according to g(.) standard is useful;
---- if g(.) is strongly biased, and very different from t(.), then the standard for estimating θ is also biased;

Mini-batch

y
1

NN

……

x1

y3

1
NN x31

y
2

NN

……

x2

y1

6
NN x16

⮚ Pick the 1st batch

⮚ Pick the 2nd batch
…

M
in

i-
b

at
ch

M
in

i-
b

at
ch C is different each time

when we update
parameters!

Mini-batch

Original Gradient Descent With Mini-batch

unstable

The colors represent the total C on all training data.

Mini-batch

y
1

NN

……

x1

y3

1
NN x31

y
2

NN

……

x2

y1

6
NN x16

⮚ Pick the 1st batch

⮚ Pick the 2nd batch

⮚ Until all mini-batches
have been picked

…

one epoch

Faster Better!
M

in
i-

b
at

ch
M

in
i-

b
at

ch

Repeat the above process

True inverse function vs. approximated inverse function

Forward model:

Y = f(X)

(1) Y: received radiation by the sensor

(2) X: variables that you want to know, e.g., class labels, chlorophyll content in leaves, leaf area index/density;

True inverse function:

X = t(Y) = f-1(Y)

where f-1(.) is difficult to get and

the form of t(.) is usually unknown;

Approximated inverse function:

X = g(Y)

Note that g(.) is only an approximation to the true inverse function t(.)

Appropriate fitting: when the complexity of g(.) is close to t(.);

Overfitting: when the complexity of g(.) is larger than t(.);

Underfitting: when the complexity of g(.) is smaller than t(.);

Based on {(Xj,Yj) | j=1,2,...,n}, we build the following

objective function:

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)

How do you choose a good g(.)?

Try different models, g1(.), g2(.), …, gn(2), and select the one that with
highest accuracy on the validation set.

Overfitting vs. Underfitting

Overfitting:

---- ML model is so flexible and complex that it accommodates the noise effect in the training data and treats
it as signal, and the learnt noise characteristics cannot generalize well to the test data;

---- very high training accuracy but low validation/test accuracy; small Bias but big variation in prediction;

Underfitting:

---- ML model is so simple and rigid that it does not has enough capacity to accommodate signal in the
training data, and the learnt biased/parcial information cannot generalize well to the test data;

---- low training accuracy & low validation/test accuracy; big Bias but small variation in prediction;

Trade-off between Bias and Variance

True inverse function: X = t(Y) = f-1(Y) unknow;

Approximated inverse function: X = g(Y) is only an approximation to t(.);

Appropriate fitting: when the complexity of g(.) is close to t(.);

Overfitting: when the complexity of g(.) is larger than t(.);

Underfitting: when the complexity of g(.) is smaller than t(.);

Bias is the difference between the average prediction of our model and the true value which we are

trying to predict.

Variance is the variability of model prediction.

Why increasing model complexity lead to small bias in prediction?

---- increasing model complexity -> g(.) to be universal approximator -> stronger
accommodating/modeling capability to learn the genuine nonlinear relationship between X and Y in X
= t(Y) -> less bias;

Why increasing model complexity lead to larger variance in prediction?

---- increasing model complexity -> g(.) to be universal approximator -> stronger
accommodating/modeling capability to learn both the genuine nonlinear relationship between X and Y
and irrelevant factors (i.e., noise and even errors in the data) -> larger variance;

Why decreasing model complexity lead to larger bias in prediction?

Why increasing model complexity lead to smaller variance in prediction?

Training error vs. test error as model complexity
changes

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/

overfittingunderfitting

Preventing
Overfitting

Improve the Network

Better optimization
Strategy

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/

Convolutional neural network (CNN)

How does CNN work in digit recognition?

Max pooling layer

Fully connected layer

DL frameworks

	Slide 1: ENGO 697
	Slide 2
	Slide 3: Machine Learning (ML) Approaches
	Slide 4: Deep Learning (DL) Approaches
	Slide 5: True Inverse Function vs. Approximated Inverse Function
	Slide 6: Example Application
	Slide 7: Inverse problem
	Slide 8: Handwriting Digit Recognition
	Slide 9: Example Application
	Slide 10: Element of Neural Network
	Slide 11: Neural Network
	Slide 12: Example of Neural Network
	Slide 13: Neural Network
	Slide 14: Neural Network
	Slide 15: Softmax
	Slide 16: Softmax
	Slide 17: How to set network parameters
	Slide 18: Inverse problem
	Slide 19: Training Data
	Slide 20: Cost
	Slide 21: Total Cost
	Slide 22: Gradient Descent
	Slide 23: Gradient Descent
	Slide 24: Local Minima
	Slide 25: Besides local minima ……
	Slide 26: In physical world ……
	Slide 27: Momentum
	Slide 28: Do we really need a global optimum?
	Slide 29: Mini-batch
	Slide 30: Mini-batch
	Slide 31: Mini-batch
	Slide 32: True inverse function vs. approximated inverse function
	Slide 33: How do you choose a good g(.)?
	Slide 34: Overfitting vs. Underfitting
	Slide 35: Trade-off between Bias and Variance
	Slide 36: Training error vs. test error as model complexity changes
	Slide 37: Recipe for Learning
	Slide 38: Recipe for Learning
	Slide 39: Convolutional neural network (CNN)
	Slide 40: How does CNN work in digit recognition?
	Slide 41: Max pooling layer
	Slide 42: Fully connected layer
	Slide 43: DL frameworks

