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(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both 

simulated and observed 

data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; 
automatic feature 

learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



Why CNN for Image?
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• When processing image, the first layer of 

fully  connected network would be very large
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100 x 100 x 3 1000

3 x 107

Can the fully connected network be simplified 
by  considering the properties of image 
recognition?



Why CNN for Image

“beak” detector

• Some patterns are much smaller than the 

whole  image

A neuron does not have to see the whole 
image  to discover the pattern.

Connecting to small region with less 
parameters



Why CNN for Image

“middle beak”  
detector

• The same patterns appear in different regions.

“upper-left  
beak” 
detector

Do almost the same thing

They can use the same
set of parameters.



Why CNN for Image

• Subsampling the pixels will not change 

the object  bird

bird

subsampling

We can subsample the pixels to make image smaller

Less parameters for the network to process the 
image



Step 1: Step 2:  

goodness of  

function

Step 3: pick  

the best  

function

Three Steps for Deep Learning

Deep Learning is so simple 
……
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The whole CNN

Fully Connected  
Feedforward 
network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flatten

Can repeat
many times



The whole CNN

Convolution

Max Pooling

Convolution

Flatten

Can repeat
many times

⮚Some patterns are much  
smaller than the whole 
image

⮚The same patterns appear in
different regions.

⮚Subsampling the pixels 
will  not change the object

Max Pooling

Property 1

Property 2

Property 3



The whole CNN

Fully Connected  
Feedforward 
network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flatten

Can repeat
many times



Convolutional Layer 

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

…
…

(The values in the filters 
are unknown parameters.)

11

Consider channel = 1
(black and white image)



Convolutional Layer 

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1
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Convolutional Layer 

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Do the same process for 
every filter

stride=1

Feature
Map
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Convolution

Convolution

…
…

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3
64

filters “Image” with 64 channels

Convolutional Layer



Convolution

Convolution

…
…

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3
64

filters “Image” with 64 channels

Filter:
3 x 3 x 64

Multiple 
Convolutional Layers

64 15



Multiple 
Convolutional Layers

Convolution

Convolution

…
…

64 
filters

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0
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The whole CNN

Fully Connected  
Feedforward 
network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flatten

Can repeat
many times



Pooling – Max Pooling 

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1
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Convolution

…
…

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

“Image” with 64 channels

Convolutional Layers
+ Pooling 

Pooling 3 0

13
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The whole CNN

Fully Connected 
Layers

cat dog ……
Convolution

Pooling

Convolution

Pooling

Flatten

softmax
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Self-attention for Graph

Consider edge: only attention 
to connected nodes

Attention Matrix
1

8

2

3

5

4

6

7

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

This is one type of Graph Neural Network (GNN).
21
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Self-attention for Image

Source of image: https://www.researchgate.net/figure/Color-image-representation-and-
RGB-matrix_fig15_282798184

This is a vector.An image can also be 
considered as a vector set.
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FC FC FC FC

Self-attention

with 
context

Self-attention
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FC FC FC FC

Self-attention

Self-attention

FC FC FC FC

Attention is 
all you need.

https://arxiv.org/abs/1706.03762
24



Self-attention

Can be either input or a hidden layer
25



Self-attention for Graph

Consider edge: only attention 
to connected nodes

Attention Matrix
1

8

2

3

5

4

6

7

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

This is one type of Graph Neural Network (GNN).
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Self-attention

relevant?

Find the relevant vectors in a sequence 

27



Self-attention

query key

attention score

28



Self-attention

Soft-max

29



Self-attention Extract information based 
on attention scores

30



Self-attention

Can be either input or a hidden layer

parallel

31



Self-attention
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Self-attention for Graph

Consider edge: only attention 
to connected nodes

Attention Matrix
1

8

2

3

5

4

6

7

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

This is one type of Graph Neural Network (GNN).
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Self-attention
=

=

=
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Self-attention
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Self-attention

36softmax



Self-attention

=
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Self-attention
=

=

=

=

=

Attention Matrix

Parameters 
to be learned 
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Self-attention for Graph

Consider edge: only attention 
to connected nodes

Attention Matrix
1

8

2

3

5

4

6

7

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

This is one type of Graph Neural Network (GNN).
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Many applications …

Transformer BERT
https://arxiv.org/abs/1706.03762 https://arxiv.org/abs/1810.04805

Widely used in Natural Langue Processing (NLP)!
40



Self-attention for Speech

Truncated Self-attention

Attention in a range
Speech is a very long 
vector sequence. 10ms

Attention 
Matrix

https://arxiv.org/abs/1910.12977
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https://arxiv.org/abs/1805.0831
8

Self-Attention GAN

DEtection Transformer (DETR)

https://arxiv.org/abs/2005.1287242



Self-attention v.s. CNN

43

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

CNN: self-attention that can 
only attends in a receptive field

Self-attention: CNN with 
learnable receptive field

⮚CNN is simplified self-attention. 

⮚Self-attention is the complex 
version of CNN.



Self-attention v.s. CNN

On the Relationship between Self-Attention and 
Convolutional Layers https://arxiv.org/abs/1911.03584

CNN

Self-attention
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Self-attention v.s. CNN

https://arxiv.org/pdf/2010.11929.pdf

An Image is Worth 16x16 Words: Transformers for Image 
Recognition at Scale

Self-attention

CNN
Good for less data

Good for more data
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Self-attention 
v.s. RNN

RNN

FC

RNN

FC

RNN

FC

RNN

FC

parallel

nonparallel

hard to 
consider

easy to 
consider

https://arxiv.org/abs/2006.16236

Transformers are RNNs: Fast Autoregressive Transformers with Linear 
Attention

Self-attention

memory

46

Recurrent Neural Network (RNN)



Structure from Motion: 2D -> 3D

47
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Rendering: 3D -> 2D



Rendering: 3D -> 2D

49



NeRF: Neural Radiative Field

50



Neural radiative field

51



52
View dependent RGB output



53
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Radiative Transfer Equations - how to describe the variation of the radiance L per unit
distance along 𝟂? The equation of radiative transfer simply says that as a beam of radiation travels, it loses energy to absorption, gains energy by

emission processes, and redistributes energy by scattering.



In-scattering - How to describe radiation directional properties? BRDF



Out-scattering & absorption - How to quantify attenuation? Beer’s Law



Solving Radiative Transfer Equations - Derive Integral form of RTEs

All RTMs follow this 
general form.

The differences 
however, are 
essentially due to 
the various forms for 
the emission and 
absorption 
coefficients.



Rendering: 3D -> 2D

59

It does not consider the following 
factors:
1. The light source and its geometry 
2. The in-scattering?
3. The bidirectional reflectance 
distribution function
4. The influence of the properties of 
the volume, e.g., biochemical 
properties



Improve Neural radiative field for 
Remote Sensing

• Encoder should output properties of the media, not just 
density and color. 

• Encoder & Decoder should address not only the 
camera geometry, but also light source geometry 

• Decoder should use bidirectional reflectance 
distribution function to model geometry dependance

• Decoder should integrate the properties of the media, 
e.g., biochemical properties, into radiative transfer, via 
RTMs, such as Prosail? 

60
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