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Hyperspectral Remote Sensing System
Characteristics of hyperspectral 

remote sensing systems:

(1) Passive, relies on the Sun as the 

source of radiation.

(2) 400nm - 2500nm for most 

commercial hyperspectral sensors.

(3) Various spectral channels

(4) Trade-off between spectral 

resolution and spatial resolution

(5) Mixed pixels



Spectral Characteristics of Energy Sources and Sensing Systems



RGB sensors vs. Multi/Hyperspectral 

Sensors RGB sensors have only 

three visible channels (i.e., 

R, G, B). 

Multispectral sensors

have more than 3 channels 

at VNIR and SWIR portions 

of the spectrum (400nm-

2500nm). 

Hyperspectral sensors

typically have hundreds of 

continuous channels at 

VNIR and SWIR portions of 

the spectrum (400nm-

2500nm)

Image from wiki.tum.de and middletonspectral.com



Trade-off Between Spectral Resolution and Spatial Resolution

Images from blog.maxar.com, nature.com

Is it possible for 15cm Maxar camera to 

have hundreds of hyperspectral channels?  



Mixed Pixel in Hyperspectral Remote Sensing Image

Illustration of mixed pixel generation in hyperspectral remote sensing (from Zhang et al. 2014)



Hyperspectral Imaging Approaches

(A) Point scan. (B) Line scan (i.e. ”pushbroom”). (C) Wavelength scan. (D) Snapshot. 



https://www.spiedigitallibrary.org/journals/

optical-engineering/

https://www.spiedigitallibrary.org/journals/optical-engineering/volume-52/issue-09/090901/Review-of-snapshot-spectral-imaging-technologies/10.1117/1.OE.52.9.090901.full?SSO=1
https://www.spiedigitallibrary.org/journals/optical-engineering/volume-52/issue-09/090901/Review-of-snapshot-spectral-imaging-technologies/10.1117/1.OE.52.9.090901.full?SSO=1
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Hyperspectral Environmental 

Monitoring Analytics

Image Source http://www.markelowitz.com

Difficulties: 

-- the large data volume of hyperspectral image (HSI);

-- the innate high-dimensionality of HSI;

-- the spatial-spectral heterogeneity in HSI;

-- the limited training samples; 

-- the noise effect in HSI, and many other factors;

What do we want from hyperspectral image (HSI)?

-- informative features extraction for visualization

-- subtle class labels, e.g., different crop types mapping, 
diseased and healthy crops discrimination;

-- biochemical parameters, e.g., chlorophyll content and 
water content in leaves;

-- biophysical parameters, e.g., leaf area index (LAI)

-- geochemical parameters, e.g., soil heavy metal 
concentration, soil moisture;

How to use Advanced Intelligent Machine Learning and 
Statistical Approaches to improve environmental variable 
extraction?



Intelligent Hyperspectral Environmental monitoring 

analytics



Spatial Modeling and Deep neural network classifier achieved 97.45%
overall accuracy using limited training samples; 

Crop classification Using Deep Learning and Spatial Modeling AVIRIS 

Hyperspectral Image with 224 Channels -- North-western Indiana, two-thirds agriculture, and one-third 

forest or other natural perennial vegetation



Classes are not separable

Clear modalities, 
more separable



Denoising of Hyperspectral Crop Scene

Raw noisy hyperspectral 
band image

Denoised hyperspectral band 
image

Noisy spectra

Denoised spectra



Outline

➔ Hyperspectral Basics

➔ Hyperspectral Image Processing Tasks

➔ UAV Hyperspectral Crop and Soil Mapping

➔ Classification vs. Spectral Unmixing

➔ Hyperspectral Image Classification 

➔ Hyperspectral Unmixing



Flight track

UAV Hyperspectral Canopy Monitoring 

Time: June 2017
Study area：1000m2

Flight altitude: 50m 
Flight speed: 2m/s 
Forward overlap: 80%
Side overlap: 45%
Volume：3590 images (13G)
Number of leaf samples: 30
(cab- μg/cm2, cw-g/cm2)

Mosaiced image



Chlorophyll content (R2=0.87) Leaf water thickness 
(R2=0.83) 

RGB image 



Vineyard mapping using Headwall Pushbroom 
Camera

True-color RGB Composite Image



Result of Leaf Area Index (LAI) EstimationResult of Water Thickness (Cw) EstimationResult of Chlorophyll Concentration (Cab) Estimation



21

Estimated LAITrue-color RGB Composite Image



Hyperspectral camera: Cubert UHD 185-Firefly 
Band range: 125 bands from 450 to 950 nm
Fight height: 178m
Images number: 1804 images
Image size 1000 × 1000 pixels 
Spatial resolution: 0.05m 

Data volume: 241 GB
# GT samples (mg/kg): 69

UAV Hyperspectral Imaging for Soil Iron Concentration Mapping



Hyperspectral soil mapping 
pipeline 

R2 statistics obtained by different feature input using 

the PLSR model
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Hyperspectral Image (HSI) Classification

RGB image   Y                                   Classification map X

For each pixel in Y, we need to estimate its “identity”, i.e., the semantic class membership

Key issues and challenges:

(1) different crops types have similar spectral pattern; weak spectral signature information -> 
requires efficient feature extraction methods;
(2) Which model is most suitable for this image? model selection;
(3) weak edges among classes; how to efficiently preserve edges in classification map? 



Problem formulation 

Forward model:

Y = f(X)

(1) Y: Remote sensing image, e.g., SAR, multispectral, hyperspectral images

(2) X: The “identity” or “class labels” of each pixel in Y

(3) f(.): The forward model, which is unknown;

True inverse function: 

X = t(Y) = f-1(Y)

where t(.) is the true inverse function that is unknown, because the forward model is unknown;  

Data-driven approximated inverse function:

X = g(Y) 

Note that g(.) is only an approximation to the true inverse function t(.), and g(.) is empirical model. 

Based on {(Xj,Yj) | j=1,2,...,n}, we build the following objective function: 

J(θ) = ∑||Xi-g(Yi)||

θ = min J(θ)                         Model selection issue: how to achieve g(.) that approximate t(.) as close as possible? 



Mixed Pixel in Hyperspectral Remote Sensing Image

Illustration of mixed pixel generation in hyperspectral remote sensing (from Zhang et al. 2014)



Spectral Unmixing

Forward model:                                                     

where:                                                     

Within a 30m-by-30m IFOV, there are multiple land cover classes, i.e., 
water, soil and grass. 

0.2

0.1

0.7

The spatial heterogeneity of land cover classes leads to mixed pixels in HSI.  

The resulting spectra observation of this mixed pixel is a mixture of three 
pure spectra, i.e., grass, soil and water.  

Spectral unmixing aims to quantify the 

within-pixel spatial heterogeneity by 
decomposing the mixed pixel into pure 
spectra (i.e., endmembers) and their 
fractional proportions (i.e., abundances). 

Spectral unmixing is essential for 

Discovering patterns using a limited 
number of abundances maps



Spectral Unmixing

● Spectral unmixing aims to disentangle the mixed pixels yi in 

hyperspectral image (HSI), and estimate both the endmembers ak and 

the abundance xik simultaneously. 

● Spectral unmixing is fundamental for quantitative information 

retrieval from HSI, and is able to support various other HSI processing 

tasks, such as denoising, super-resolution, subpixel mapping and 
classification. 

The noise effect

The abundance of kth endmemberThe kth endmember

The ith mixed pixel



Classification vs. Spectral Unmixing 

(1) Classification

● Forward model:  Y = f(X), where f(.) does not exist. 

● True inverse function:  X = t(Y) = f-1(Y), where the true inverse function t(.) is unknown

● Approximated inverse function by supervised learning: X = g(Y) 

Approximate t(.) using raining pairs: {(Xj,Yj) | j=1,2,...,n}, -------> J(θ) = ∑||Xi-g(Yi)||, -----> θ = min J(θ)

(1) Spectral Unmixing

● Forward model:  Y = f(X)=AX+N, where f(.) is the linear spectral mixture model

● True inverse function:  X = t(Y) = f-1(Y)=A-1(Y-N), however, A is generally not invertible (low rank)

● Estimate Xi using constrained linear optimization:

Given (Xi,Yi), -------> J(Xi) = ||Yi-AXi||, ----->  Xi = min J(Xi)



(1) Direct 
inversion

(2) LUT approach (3) Numerical 
Approach

(4) Simulation & ML (5) ML (6) DL

f(.) is known yes yes yes yes yes yes

f(.) is partially known, i.e., form 
known, but with some unknown 
parameters U

no no Yes, estimate X 
and U together

no no no

f(.) unknown, (X,Y) known no no no no yes yes

f(.) unknown, (X,Y) unknown no no no no no no

If both f(.) and (X,Y) known, 
can accommodate both?

no yes? Yes? Use (X,Y) to 

estimate parameters 

in f(.)

yes? Yes, use both 

simulated and observed 

data

Yes, use both 

simulated and observed 

data

Can use prior information? e.g., 

spatial prior and value prior

no Yes? Use value prior for 

sampling

Yes? Use value prior o f 

X in Bayesian estimation

Yes, Use value prior in  sampling 

and spatial prior in Random fie lds

Yes, spatial prior in 

Random field 

approaches

Yes, similar to ML

Advantages Knowledge
-driven; 
Simple, 

easy

Knowledge-driven; 
Intuitive, easy, 
discrete fitting; 

Knowledge-driven; 
estimate U; 
Efficient for simple 

f(.) in convex 
problems

Knowledge-driven; 
flexible; continuous fitting; 
good inter/extrapolation; 

faster than LUT

Data-driven; 
flexible; Classic; 

Strong modeling 
capability; 
automatic feature 

learning;

Disadvantages Unrealistic; 
rely on 
simple f(.)

Sensitive to 
accuracy of f(.), 
similarity metrics, 

sampling density 
and range; slow if 

LUT is large; bad for 
extrapolation; 

Rely on efficiency 
of nonlinear solver; 
Slow; Local 

optimum; 

Overfitting and underfitting 
risk to simulated data; 
difficult model selection; 
Sensitive to accuracy of f(.), 

similarity metrics, sampling 

density and range; 

Weak modeling 
capability; Rely on 

“good” engineered 

features; Black-box; 
Overfitting, underfitting; 

Feature and model  

selection is difficult and 

slow

Overfitting and  
underfitting; Black-
box; 



(3) Numerical Approaches

If the radiative transfer model f(.) is known, and we have an remote sensing observation Y, we can use the numerical 

approach to estimate the associated X.

Forward model:    Y = f(X), where f(.) is the radiative transfer models, which tend to be highly nonlinear and un-invertible. 

Based on some observations {Y}, we can build an objective function:

J(X) = Y-f(X)

X = min J(X)

We try to find X that through f(.) can generate output whose value is very close to the value of Y. 

There are many methods that can solve this nonlinear optimization problems, for example,

---- Newton’s method

---- Gradient descent methods

---- Simulated annealing approach

Because the forward model f(.) contains knowledge and physical rules, f(.) is usually called physical model. 



Spectral Unmixing -- What if both A and S are unknown 

Forward model:  Y = f(X)=AX+N, where f(.) is the linear spectral mixture model

True inverse function:  X = t(Y) = f-1(Y)=A-1(Y-N), however, A is generally not invertible (low rank)

● Only Xi is unknown, estimate Xi using constrained linear optimization: 

Xi = min J(Xi) , where J(Xi) = ||Yi-AXi||

● Both A and Xi are unknown, estimate Xi and A iteratively using Expectation-maximization (EM) algorithm:

E-step: estimate Xi based on A and Yi  : 

Xi = min J(Xi) , where J(Xi) = ||Yi-AXi||

M-step: estimate A based on Xi and Yi  : 

A =  min J(A) , where J(A) = ||Yi-AXi||

Repeat E-step and M-step until convergence;
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Linear spectral mixture model (LSMM)

0.2

0.1

0.7

X: observation matrix of HSI
A: endmember matrix
S: abundance matrix



How spectral unmixing helps other tasks?

•



Key issues of spectral unmixing

(1) The characterization of noise n in HSI
--- Over or under characterization of noise n cause inaccurate {si} and {ak}.

(2) The development of effective constraint on endmembers {ak}
--- Effective constraints on {ak} serve as guidance and regulations during the estimation process.

(3) The modeling of abundance {si} in HSI
--- Accurate regulating and estimating of {si} relies on well leveraging the spatial contexture 
information.

(4) The design of fast and efficient model optimization techniques
a



Inverse problem optimization

Forward model:

Inverse model:

Check the posedness:

Px1 PxK Kx1

Unknowns are much more than knowns. 
🡪 Infinite solutions 
🡪 Uniqueness fails.

❑ EXISTENCE （ ）

❑ UNIQUENESS （ ）

❑ CONTINUITY （ ）

🡪 Prior knowledge is required
🡪 Regulations

🡪 The problem is ill-posed

🡪 Bayesian approach



Posterior distribution: 

Maximum a posteriori 
(MAP): 

Objective function: 

Inverse problem optimization

PAGE  39



Key research issues

•

1) The characterization of noise n
in HSI.

2) The development of effective 
constraint on endmembers {ak}.

3) The modeling of abundance 
{si} in HSI.

4) The design of fast and efficient 
model optimization techniques.
a

PAGE  40



1. Introduction

2. Hyperspectral unmixing

3. Key research issues

o Characterization of noise in HSI

o Endmember constraints

o Modelling the spatial correlation in abundances

4. Implementation of a Bayesian spectral 

unmixing framework



Characterization of noise in HSI

⮚ Thermal noise and quantization noise are signal independent 
and usually Gaussian distributed.

⮚ Other noise types: shot noise, sparse noise, pattern noise

⮚ Current imaging systems that are designed based on the 
assumption of additive Gaussian noise perform quite well.

⮚ Noise levels of HSI vary dramatically over bands for most 
sensors due to different spectral absorption properties of 
different spectral channels and the typical existence of “junk 
bands”.

PAGE  42
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Figure: Comparison of noise 
estimation of Indian Pines in the 
wavelet domain and by using 
multiple regression approach.

Rasti, Behnood. Sparse hyperspectral image modeling and 

restoration. Diss. Ph. D. dissertation, Dept. Elect. Comput. 
Eng., Univ. Iceland, Reykjavik, Iceland, 2014.

Noise variance heterogeneity



Characterization of noise in HSI

⮚ The modelling of the noise variance heterogeneity 
effect in HSIs. 

Current SU methods:
assume that noise in different bands are IID Gaussian 
noise. 
--- undesirable preservation of noise in some bands & 
erasing of the signal in some other bands.

44PAGE  44



Constraints on endmembers

❑ Geometrical-based algorithms 

❑ Prior distribution constraints in the Bayesian framework 

❑ K-P-means 

❑ Endmember variability modelling 

⮚ The purified means constraint on A for SU. 

⮚ The modelling of the endmember variability effect.  

⮚ The selection of the proper prior distribution of A. 

PAGE  45



Modelling of large-scale non-stationary spatial 
correlation in abundances

❑ Graphical models e.g., conditional random field(CRF)

❑ Non-local approaches e.g., Non-local networks

❑ Deep image prior （DIP）

⮚ Leveraging DIP using a FCNN for abundance mapping.

⮚ Applying the CRF approach on S as a post-processing method. 

⮚ Incorporating non-local neural network to CNN or FCNN. 

Jasper Ridge

PAGE  46
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Key research issues

•

1) The characterization of noise n
in HSI.

2) The development of effective 
constraint on endmembers {ak}.

3) The modeling of abundance 
{si} in HSI.

4) The design of fast and efficient 
model optimization techniques.
a



Data likelihood with heterogeneous noise 
variance  -- p(X|A, S)

Spectral unmixing   Forward  model  

-- Noise variance heterogeneity



Conditional distribution of endmembers 
given abundance with purified means 
-- p(A|S)

Achieved by the 

endmember extraction algorithm

“K-P-Means”



Prior of abundance with DIP – p(S)

The forward propagation of fully convolutional neural network (FCNN).

Ulyanov, Dmitry, Andrea Vedaldi, and Victor 

Lempitsky. "Deep image prior." Proceedings 

of the IEEE Conference on Computer Vision 

and Pattern Recognition. 2018.



The proposed Bayesian convolutional unmixing 
network (BCUN)



Model optimization

E-step: Given endmembers A estimate abundances S by optimizing a FCNN.

M-step: Given S, estimate endmembers A. Endmembers A are estimated using 
purified means approach.

-- Expectation-Maximization (EM) algorithm

-- Maximum a posteriori (MAP) optimization



Experiment Design
❖ Dataset: 

Simulated HSI & real HSI (Jasper Ridge)

❖ Methods compared: 

PPI, N-FINDR, VCA, Kpmeans, uDAs & BCUN

Simulated HSI
104x104x200

Real HSI
512x614x224

❖ Numerical measure: 

Spectral angle distance (SAD)  

Abundance angle distance (AAD) 

Structural similarity (SSIM)

Mean squared error (MSE)



Test on Simulated HSI



Model comparison -- Abundance estimation

Figure 1. The abundance maps achieved by different methods on one 

endmember with different SNR values, i.e., 10, 20, 30dB from top row to 
bottom row and the ground truth (GT) at the last column.



Model comparison -- Endmember extraction

Figure 2. Four endmembers 

achieved by different 

methods on the HSI with 

SNR equals 30dB.

PAGE  57



Test on real HSI



Figure 3. The abundance maps achieved by different methods on four endmembers (tree, water, soil, 

road) respectively from top row to bottom row.

Model comparison -- Abundance estimation



Figure 4. The estimated 

endmembers achieved by different 

methods, along with the references 

from the USGS library on four 

images about four materials 
separately from left column to right 

column.

Model comparison -- Endmember extraction



Conclusion of experiments

⮚The proposed BCUN approach constitutes a complete 

Bayesian approach with effective modelling and 

optimization approaches for enhanced spectral 

unmixing. 

⮚The proposed approach was tested on both real and 

simulated HSI, in comparison with several other popular 

SU methods, and results demonstrated that the 

proposed BCUN method was more capable of 

accurately estimating both the endmember and 

abundance from HSIs.
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HSI Classification
Knowledge-driven feature engineering vs. 
Data-driven deep learning (DL)

Advantages of DL approaches for RS image classification:

(1) automatically learn the “best” feature without requiring task-specific classifier-specific knowledge;

(2) End-to-end approach without any intermediate stages in the data-processing pipeline;

(3) Complex model -> strong modeling capability -> efficiently capture the subtle differences among classes;

(4) Powerful GPU computation  



Steps for Hyperspectral 
image (HSI) classification 
using the CNN approach:

Step 1: 3D cube extraction, for each 
pixel with known label, extract a 3D 
cube centered at this pixel to use as 
Yi;

Step 2: split the 3D cubes into 
training set, validation set and test 
set;

Step 3: train CNN on the training 
set, compare models using 
validation set and determine the 
“best” model architecture;

Step 4: generate test accuracy and 
classification maps using the “best” 
model architecture;

Flowchart of using CNN for HSI classification



CNN Architecture for HSI Classification

CNN architecture for HSI classification (from Paoletti et al. 2018)

https://www.sciencedirect.com/science/article/pii/S0924271617303660


CNN Code is on Github 



basic_cnn.py
defines the 
CNN 
architecture for 
HSI 
classification



train.py sets 
parameters 
and trains the 
CNN model



train.py sets 
parameters 
and trains the 
CNN model



classification_
map.py
predicts all 
pixels on HSI 
and generates 
classification 
map using the 
trained model 
by train.py



tools.py
implements 
some functions 
for generating 
training 
samples and 
visualization. 



Loss, Train Acc and Test Acc over Iterations

(1) Loss keeps decreasing 
over stochastic gradient 
descent (SGD) iterations;

(2) Both train and test
accuracies keep 
increasing;

(3) Training accuracy is 
higher than test accuracy
over iterations;



Classification Results 
via CNN (with 20% 
pixels used as training 
samples)

(1) Overall, the classification 
maps generated by CNN 
match the ground truth map 
very well;

(2) CNN full map generally 
delineates quite well the 
edges in the false color 
image, although there is still 
room for improvement in 
terms of edge preservation;

(3) Overall accuracy of 94.5% 
is very high; 

Ground Truth                        CNN Full Map (OA:94.5%)        CNN No Background (OA: 94.5%) 

False Color Image    



1. Overall accuracy (OA) 

OA = (21 + 31+ 22)/95 = 77.9%

2. Producer’s accuracy (PA)

PAwater= 21/33 = 64%

3. User’s accuracy (UA)

UAwater= 21/27= 78%

How to calculate PA and UA for Forest and 
Urban?

Quantitative Classification Performance Evaluation



Convolutional neural network (CNN)



Max pooling layer



Fully connected layer
Fully connected layer



Questions? 
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